NAME:				
UW ID:				

Academic Honesty Statement: All work on this exam is my own.

Signature:

INSTRUCTIONS

- 1. This exam contains eight (8) printed pages. Check that on your exam the bottom of the last page says **END OF EXAM**.
- 2. The points for each question are indicated at the beginning of each question.
- 3. Show all your work, unless the problem says otherwise explicitly. An answer without work shown will receive little or no credit.
- 4. If you need more space for your answer, use the back of the page and indicate that you have done so.
- 5. You may use one sheet of handwritten notes on a 8.5×11 inch paper, both sides. You may use a TI-30X IIS calculator. No other resources are allowed.
- 6. Raise your hand if you have a question.
- 7. Time allowed: 50 minutes.

1	/10
2	/25
3	/10
4	/10
5	/10
6	/10
7	/15
Total	/90

(1) [5 points each] Compute:

(i)
$$8 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + 60 \begin{bmatrix} 1\\0\\1 \end{bmatrix} + 100 \begin{bmatrix} 0\\1\\1 \end{bmatrix} =$$

(ii)
$$\begin{bmatrix} 4 & 0 & -2 & 1 \\ 3 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \\ 5 \end{bmatrix} =$$

(2) (a) [10 points] Determine the general solution to the following system of equations:

Show all your work.

(b) [5 points] Find an expression of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as a linear combination of the vectors $\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 7 \end{bmatrix}$. Give an answer with constants, using no variables or parameters. (Hint: use part (a).)

(c) [10 points] Determine all values of a and b such that the following system of equations in w_1, w_2, w_3 has no solutions.

Show all your work.

(3) A logistic curve is a curve in the (x, y)-plane defined by an equation of the form

$$y(1+ae^{-x}) = b,$$

where a and b are constants. Suppose we want a logistic curve that passes through the points (0, 1), (1, 4), and (3, 6). How can we find its equation?

(a) [5 points] Write a system of linear equations in a, b to describe the coefficients of a logistic curve which passes through the three given points. (Write out equations with variables.) Do not simplify constants of the form e^{-c} . You do not have to solve the system. Show your work, and put a **box around your answer**.

(b) [5 points] Write the augmented matrix of the system found in part (a). You do not have to solve the system.

(4) (a) [5 points] Does this set of vectors span \mathbb{R}^5 ? Justify your answer.

$$\vec{\mathbf{v}}_{1} = \begin{bmatrix} 1\\3\\9\\0\\1 \end{bmatrix}, \ \vec{\mathbf{v}}_{2} = \begin{bmatrix} 3\\0\\7\\7\\1 \end{bmatrix}, \ \vec{\mathbf{v}}_{3} = \begin{bmatrix} 2\\1\\1\\1\\1 \end{bmatrix}.$$

(b) [5 points] Does this set of vectors span \mathbb{R}^4 ? Justify your answer.

$$\vec{\mathbf{u}}_{1} = \begin{bmatrix} 1\\ -3\\ 1\\ 1 \end{bmatrix}, \ \vec{\mathbf{u}}_{2} = \begin{bmatrix} 1\\ 1\\ -3\\ 1 \end{bmatrix}, \ \vec{\mathbf{u}}_{3} = \begin{bmatrix} 1\\ 1\\ 1\\ -3\\ 1 \end{bmatrix}, \ \vec{\mathbf{u}}_{4} = \begin{bmatrix} -3\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}.$$

(5) [10 points] Consider the vectors $\vec{\mathbf{w}}_1, \dots, \vec{\mathbf{w}}_4$ as shown below. (The plane contains $\vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2, \vec{\mathbf{w}}_3$.)

(a) [5 points] Which of the following sets of vectors are linearly independent? Circle all that apply. No justification is needed.

$$\{\vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2\} \qquad \{\vec{\mathbf{w}}_1, \vec{\mathbf{w}}_4\} \qquad \{\vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2, \vec{\mathbf{w}}_4\}$$
$$\{\vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2, \vec{\mathbf{w}}_3\} \qquad \{\vec{\mathbf{w}}_2, \vec{\mathbf{w}}_3, \vec{\mathbf{w}}_4\} \qquad \{\vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2, \vec{\mathbf{w}}_3, \vec{\mathbf{w}}_4\}$$

(b) [5 points] Consider the linear transformation $S: \mathbb{R}^4 \to \mathbb{R}^3$ defined by

$$S\left(\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}\right) = x_1\vec{\mathbf{w}}_1 + x_2\vec{\mathbf{w}}_2 + x_3\vec{\mathbf{w}}_3 + x_4\vec{\mathbf{w}}_4.$$

Is S one-to-one? Explain why or why not. You may use part (a) in your explanation.

- (6) [10 points] Suppose $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{u}}, \vec{\mathbf{w}}$ are vectors in \mathbb{R}^n such that
 - $\vec{\mathbf{u}}$ is in span{ $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ }, and
 - $\vec{\mathbf{w}}$ is not in span{ $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ }.

Is $\vec{\mathbf{u}}+\vec{\mathbf{w}}$ in span{ $\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2$ }? Justify your answer.

(Hint: Consider the vector diagram in problem (5) on the previous page.)

- (7) [5 points each] In each of the following, either give an example or write "not possible". No justification is necessary.
 - (a) A linear system in echelon form whose general solution is $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix} + s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.

(b) A set of vectors in \mathbb{R}^4 that is dependent, and spans \mathbb{R}^4 .

(c) Vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3$ in \mathbb{R}^3 such that $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$ is dependent, and span $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\} = \mathbb{R}^3$.

END OF EXAM